Entry Level Literacy and Numeracy Assessment for the Electrotechnology Trades

Enrichment Resource

UNIT 7: Percentages
© Commonwealth of Australia 2010. This work is copyright. You may download, display, print and reproduce this material in whole or in part or in modified form (retaining this notice) for your personal, non-commercial use or use within your organization. If you use, display or reproduce this material or a modified form of it in whole or in part within your organization you must include the following words in a prominent location within the material in font not less than size 12: “The views expressed in this publication do not necessarily represent the view of the Minister for Education or the Australian Government. The Australian Government does not give any warranty nor accept any liability in relation to the contents of this work.”

Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to the Commonwealth Copyright Administration, Attorney General’s Department, Robert Garran Offices, National Circuit, Barton ACT 2600 or posted at http://www.ag.gov.au/cca

The views expressed in this publication do not necessarily represent the view of the Minister for Education or the Australian Government. The Australian Government does not give any warranty nor accept any liability in relation to the contents of this work.
PERCENTAGES

Percentage values are used extensively in the study of motors, generators and alternators. They are also applied in the study of resistors, transformers and time constraints.

For example, percentages are used to express the degree of power supply regulation, efficiency of a device, degree of slip in a motor motors and tapping of transformers.

LEARNING OUTCOME

- Can accurately calculate percentages

PERFORMANCE CRITERIA

- Expresses fractions and decimals as a percentage.
- Uses the calculator to accurately express one quantity as a percentage of another.
- Uses the calculator to accurately calculate the percentage of a value.
- Uses the calculator to accurately calculate percentage increase and decrease.
- Uses the calculator to solve electrical problems involving percentage calculations.
PRELIMINARY EXERCISE

Multiplying and Dividing by 10's

When multiplying by multiples of ten, the decimal point is moved over the same number of places as there are zeros in the multiplier, eg.:

\[
\begin{align*}
3.54 \times 10 &= 35.4 \quad \text{(One zero implies one place).} \\
3.54 \times 100 &= 354 \quad \text{(Two zeros implies two places).} \\
3.54 \times 1000 &= 3540 \quad \text{(Three zeros implies three places).}
\end{align*}
\]

EXERCISE 1

Calculate answers to the following without using a calculator.

a) \(0.73 \times 10 = \)

b) \(0.73 \times 1000 = \)

c) \(12.60 \times 100 = \)

d) \(0.0089 \times 10 = \)

e) \(761.2 \times 100 = \)

f) \(3.504 \times 100 = \)

g) \(0.6821 \times 10000 = \)

When dividing by multiples of ten, the decimal point moves to the left. Again, the same number of places as there are zeros in the divisor, eg.

\[
\begin{align*}
2.67 \div 10 &= 0.267 \\
2.67 \div 100 &= 0.0267 \\
2.67 \div 1000 &= 0.00267 \\
2.67 \div 10 &= 0.267 \\
2.67 \div 100 &= 0.0267 \\
2.67 \div 1000 &= 0.00267
\end{align*}
\]

EXERCISE 2

Using the calculator

Calculate answers to the following using the calculator.

a) \(0.087 \div 10 = \)

b) \(56.8 \div 100 = \)

c) \(156.7 \div 1000 = \)

d) \(2.4 \div 100 = \)

e) \(0.003 \div 10 = \)

f) \(100.67 \div 100 = \)

Use the answer sheet to check your work.
WHAT IS A PERCENTAGE?

A percentage is a special fraction. Per cent means out of one hundred or per 100.

Percentages are fractions with 100 on the bottom (the denominator).

Hence:
\[7\% = \frac{7}{100} \]
\[50\% = \frac{50}{100} = \frac{1}{2} \]
\[100 = \frac{100}{100} = 1 \text{ (‘everything’)} \]

EXERCISE 3

Match each of the short statements below with the most likely percentage. Draw a line to link the statement and the percentage.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Alcohol Content</td>
<td>9.2%</td>
</tr>
<tr>
<td>Time and Half Overtime Rate</td>
<td>3%</td>
</tr>
<tr>
<td>Totally Fat Free</td>
<td>.05%</td>
</tr>
<tr>
<td>All Steel Construction</td>
<td>150%</td>
</tr>
<tr>
<td>Tax Rate</td>
<td>0%</td>
</tr>
<tr>
<td>A Wage Rise</td>
<td>100%</td>
</tr>
<tr>
<td>Operating on Half Load</td>
<td>50%</td>
</tr>
<tr>
<td>Superannuation Contribution</td>
<td>33%</td>
</tr>
</tbody>
</table>
PERCENTAGE DIAGRAMS

EXERCISE 4
Complete the following statements:

a) 8 per cent means ______ or ______ parts in 100 parts

b) 4 per cent means ______ in 100

c) 3.9 per cent means ______

100

d) 5% = ______ = _____ (cancelling by 5's)

100
20

EXERCISE 5
Write the following percentages as simple fractions (cancel down the answer where possible).

a) 25% =

b) 60% =

c) 11% =

d) $12\frac{1}{2}\% = \frac{25\%}{2} = \frac{25}{2} \times \frac{1}{100} = \frac{25}{2 \times 100} = \frac{25}{200}

= \frac{1}{8}$

e) $33\frac{1}{3}\% = \frac{\ldots\%}{3}$

= \frac{\ldots}{3 \times 100} = \frac{\ldots}{300}

f) $7\frac{3}{4}\% =$

= \frac{7 \times 4}{4 \times 100} = \frac{28}{400} = \frac{7}{100}$

Use the answer sheet to check your work.

WRITING FRACTIONS AND DECIMALS AS PERCENTAGES

To express a fraction or decimal as a percentage simply multiply by 100 and put the % sign in place.

Example 1 - Decimals to Percentages

a) 0.31 as a percentage 0.31 x 100% = 31%
Using the calculator

0 . 3 1 x 1 0 0 = Answer 31%

b) 0.8 as a percentage 0.8 = 0.8 x 1000k = 80%

Using the calculator

0 . 8 x 1 0 0 = Answer 80%

Example 2 - Fractions to Percentages

a) Write 1/4 as a percentage:

\[
\frac{1}{4} = \frac{1 \times 100}{4} = \frac{100}{4} = 25\%
\]

Using the calculator

1 ÷ 4 x 1 0 0 = Answer 25%

b) Write \(\frac{45}{50}\) as a percentage:

\[
\frac{45}{50} = \frac{45 \times 100}{50 \times 1} = \frac{45 \times 2}{1} = 90\%
\]
Using the calculator

\[
\begin{array}{c}
4 & 5 & \div & 5 & 0 & \times & 1 & 0 & 0 & = \\
\end{array}
\]
Answer 90

or

Using the calculator

\[
\begin{array}{c}
4 & 5 & \div & 5 & 0 & \% & = \\
\end{array}
\]
Answer 90

Note: Steps used on some calculators may differ. Refer to your calculator guide.
EXERCISE 6
Write these fractions as percentages using the calculator. (Correct to 2 decimal places where appropriate)

a) \(\frac{1}{10} = \)

b) \(\frac{5}{8} = \)

c) \(\frac{7}{9} = \)

d) \(\frac{45}{80} = \)

EXERCISE 7
Using the calculator, complete the following table of commonly used fractions and percentages and try to remember them.

<table>
<thead>
<tr>
<th>FRACTION</th>
<th>PERCENTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td></td>
</tr>
<tr>
<td>1/5</td>
<td></td>
</tr>
<tr>
<td>2/5</td>
<td></td>
</tr>
<tr>
<td>3/5</td>
<td></td>
</tr>
<tr>
<td>4/5</td>
<td></td>
</tr>
<tr>
<td>1/8</td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td></td>
</tr>
<tr>
<td>1/3</td>
<td></td>
</tr>
<tr>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>1/6</td>
<td></td>
</tr>
<tr>
<td>1/10</td>
<td></td>
</tr>
<tr>
<td>1/20</td>
<td></td>
</tr>
</tbody>
</table>

✅ Use the answer sheet to check your work.
EXPRESSING ONE QUANTITY AS A PERCENTAGE OF ANOTHER

If we want to express the ratio of one quantity to another as a percentage then we must first record the two quantities as a fraction.

Example 3

Of 760 light fittings produced, 80 had defects. What percentage had defects?

\[
\frac{80}{760} \times 100 = \frac{8000}{760} = 10.53\% \text{ (two decimal places)}
\]

Note: Steps used on some calculators may differ. Refer to your calculator guide.
EXERCISE 8

Express the following as percentages:

a) 26 out of 62

b) 13 out of 27

c) 76 out of 220

d) 3 out of 75

e) 40 is what percentage of 320?

f) 184 as a percentage of 73

Use the answer sheet to check your work.
EFFICIENCY

Efficiency of an electrical device can be calculated using the following formula:

\[
\text{Efficiency} = \frac{\text{Power Output} \times 100}{\text{Power Input}}
\]

The power output is expressed as a percentage of the power input. This tells us how efficiently the device is using the available power. The higher the percentage, the more efficient the device.

Efficiency Formula

\[
\text{Efficiency} = \frac{\text{Power Output}}{\text{Power Input}} \times 100\%
\]

Example 4

If a mechanical device has a power input of 160W and a power output of 120W, find the efficiency.

\[
\text{Efficiency} = \frac{120}{160} \times 100 = 75\%
\]

Using the calculator

\[1 \ 2 \ 0 \ - \ 1 \ 6 \ 0 \ %\]

Answer 75%
EXERCISE 9
Find the efficiency of the following devices given the power output and input.

a) Amplifier
 Output = 100W Input = 250W

b) Electric Motor
 Output = 3kW Input = 3.35kW

c) Radiator
 Output = 1000W Input = 1010W

d) Solar Cell
 Output = 1W Input = 5W

EXERCISE 10
List the devices in Exercise 10 in order of efficiency from most efficient to least efficient.

1. ..
2. ..
3. ..
4. ..

✓ Use the answer sheet to check your work.
FINDING A PERCENTAGE OF A VALUE

Example 5

12% of $250

\[
\frac{12 \times 250}{100} =\]

\[
= 30
\]

Using the calculator

\[
2 \ 5 \ 0 \ \times \ \ 1 \ 2 \ \% \ \ = \ \ \text{Answer 30}
\]

or

\[
1 \ 2 \ \% \ \times \ \ 2 \ 5 \ 0 \ \ = \ \ \text{Answer 30}
\]

EXERCISE 11

Calculate the following:

a) 45% of 300 =

b) 140% of 0.05 =

c) 65% of 1200 =

d) 0.020% of 1500kHz =

EXERCISE 12

If a company must reduce its workforce of 670 by 20%, how many workers must be retrenched?

EXERCISE 13

If you earn 5% commission on sales of $2,000, how much commission do you earn?

Use the answer sheet to check your work.
PERCENTAGE INCREASE AND DECREASE

Quantities such as changes in amperage, increases in voltage and ranges in resistance are often expressed as percentage changes.

A cable is overloaded by 26%.
The amperage of a current in a circuit decreases by 25%.
A resistor is labelled as having a resistance of 220ohms plus or minus 5%.

Example 6
A multimeter is priced at $250 plus 20% sales tax. How much do you have to pay for the multimeter?

The increase is given as a percentage of the original, so the increase in this example is 20% of $250:

\[
\frac{20}{100} \times 250 = \frac{20}{100} \times 250 = 2 \times 25 = 50
\]

Using the calculator

Note: Steps used on some calculators may differ. Refer to your calculator guide.

\[
250 \times 20 \%
\]

Answer $50

\[\therefore \text{The new expenditure} = \text{original expenditure} + \text{increase}\]

\[= 250 + 50 = 300\]

Example 7
At a switchboard the voltage is 240V. At the end of a circuit which is fed by the switchboard, the voltage has dropped by 5%.
What is the voltage at the end of the circuit?

5% of 240V

\[
\frac{5}{100} \times 240 = 12V
\]

\[\therefore \text{Voltage at the end of the circuit} = 240V - 12V = 228V\]
EXERCISE 14
The power output of a broadcast station is increased by 40%. If the original power output was 1000W what is the new output?

EXERCISE 15
A resistor is marked as being 47,000 ohms ± 10%.

What is the maximum acceptable value of the resistor?

What is the minimum acceptable value of the resistor?

EXERCISE 16
A resistor is labelled as having a resistance of 22 ohms plus or minus 5%. When measured the same resistor is found to have an actual resistance of 21 ohms.

Is this value acceptable? (Show your working)

✅ Use the answer sheet to check your work.
PERCENTAGE CHANGE

A useful way to examine the change in size of quantity is to calculate its increase or decrease as a percentage of its original size.

In some instances it is necessary to find the percentage of change of some electronic characteristic.

This can be calculated by using the following formula.

\[
\text{% of change} = \frac{\text{change} \times 100}{\text{original value}}
\]

Example 8

The voltage is increased from 100 to 125 volts. What is the percentage of increase?

\[
\text{% of change} = \frac{125 - 100}{100} \times 100 = \frac{25}{100} \times 100 = 25\%
\]

Using the calculator

Note: Steps used on some calculators may differ. Refer to your calculator guide.

1 2 5 - 1 0 0 = Answer $25

Then

+ 1 0 0 % Answer 25%

Answer The voltage has increased by 25%.
Example 9

If the voltage is decreased from 125 to 100. What is the percentage of decrease?

% of change = \frac{125 - 100}{125} \times 100

= \frac{25}{125} \times 100

= 20\%

Using the calculator

\[1 \quad 2 \quad 5 \quad - \quad 1 \quad 0 \quad 0 \quad = \quad \text{Answer 25} \]

Then

\[\div \quad 1 \quad 2 \quad 5 \quad \% \quad \text{Answer 20\%} \]

Answer The voltage has decreased by 20\%
EXERCISE 17
Current in a circuit decreases from 8 to 6 amperes. What is the percentage of decrease?

EXERCISE 18
A cable is rated to carry up to 50 amps. It is however measured to be carrying 63 amps. By what percentage is the cable overloaded?

EXERCISE 19
A transformer is used to step up voltage from 240 volts to 420 volts. By what percentage has the voltage been increased?

EXERCISE 20
Voltage in a Circuit is increased from 120 to 130 volts. What is the percentage of increase?
PERCENTAGE OF ERROR

In some situations an electrician needs to know percentage of error. For example, suppose that the calculated value of a quantity is 60 volts but the measured value is 66 volts.

\[
\text{% error} = \frac{\text{difference}}{\text{reference value}} \times 100
\]

\[
= \frac{66 - 60}{60} \times 100
\]

\[
= \frac{6}{60} \times 100
\]

\[
= 10\%
\]

Answer
The percentage error in the measured voltage value is 10% (too high.)

EXERCISE 21
Resistance in a circuit should be 50,000 ohms, but the actual value is 48,000 ohms. What is the percentage of error?

EXERCISE 22
Voltage in a circuit is 120 volts, but it should be 128 Volts. What is the percentage of error?

✔️ Use the answer sheet to check your work.
PERCENTAGE RULES

1. Percentage is a method of writing hundredths as whole numbers.

Example: \(\frac{63}{100} \) is 63%; In reverse, 63% is \(\frac{63}{100} \) or .63

 a) \(\frac{5}{100} = 5\% = .05 \)

 b) 19% = \(\frac{19}{100} = .19 \)

 c) .89 = \(\frac{89}{100} = 89\% \)

The whole of anything is 100% or \(\frac{100}{100} \) or 1

2. Decimals are changed to percent by multiplying by 100 and adding the "%" sign. This is the same as moving the decimal point two places to the right.

 a) .77 = .77 x 100% = 77%

 b) 1.05 = 1.05 x 100% = 105%

 c) .002 = .002 x 100% = .2%

3. Fractions are changed to percent by first changing to a decimal then use the procedure outlined in (2).

 \(\frac{7}{8} = 7 \div 8 = .875 \) or 87.5%

4. Percent is changed to a decimal by dividing by 100. This is the same as moving the decimal point two places to the left and dropping the "%" sign.

 a) 93% = .93

 b) 140% = 1.40

 c) .7% = .007
5. To find what percent one number is of another: Establish a fraction - the part is the numerator; the whole is the denominator. Express this fraction as a percentage.

Example

An apprentice was asked to Install 80 metres of cable on a building site. At the end of the day the apprentice had installed 60 metres. What percent of the cable did he install?

\[
\frac{60}{80} = 60 \div 80 = 0.75 = 75\%
\]

6. To find what a certain percent of a number is, change the percent to a decimal and multiply.

Example

What is 20% of 600?

\[
20\% \times 600 = \frac{20}{100} \times 600 = 0.20 \times 600 = 120
\]
ANSWERS

EXERCISE 1
a) 0.73 x 10 = 7.3
b) 0.73 x 1000 = 730
c) 12.60 x 100 = 1260
d) .0089 x 10 = 0.089
e) 761.2 x 100 = 76120
f) 3.504 x 100 = 350.4
g) .6821 x 10000 = 6821

EXERCISE 2
a) .087 + 10 = 0.0087
b) 56.8 + 100 = 0.568
c) 156.7 + 1000 = 0.1567
d) 2.4 + 100 = 0.024
e) 0.003 + 10 = 0.0003
f) 100.67 + 100 = 1.0067

EXERCISE 3
Blood Alcohol Content = .05%
Time and Half Overtime Rate = 150%
Totally Fat Free = 0%
All Steel Construction = 100%
Tax Rate = 33%
A Wage Rise = 3%
Operating on Half Load = 50%
Superannuation Contribution = 9.2%

EXERCISE 4
a) 8% means $\frac{8}{100}$ or 8 parts in 100
b) 4% means 4 parts in 100
c) 3.9% means $\frac{3.9}{100}$
d) 5% means $\frac{5}{100} = \frac{1}{20}$
EXERCISE 5

a) 25% = \frac{25}{100} = \frac{1}{4}

b) 60% = \frac{60}{100} = \frac{3}{5}

c) 11% = \frac{11}{100} = \frac{1}{10}

d) 12 \frac{1}{2}% = \frac{25}{200} = \frac{1}{8}

e) 33 \frac{1}{3}% = \frac{100}{3} = \frac{100}{300} = \frac{1}{3}

f) 7 \frac{1}{4}% = \frac{29}{4} = \frac{29}{400}

EXERCISE 6

a) \frac{1}{10} = 10%

b) \frac{5}{8} = 62.5%

c) \frac{7}{9} = 77.78%

d) \frac{45}{80} = 56.25\%
EXERCISE 7
1/4 = 25%
1/2 = 50%
3/4 = 75%
1/5 = 20%
2/5 = 40%
3/5 = 60%
4/5 = 80%
1/8 = 12.5%
3/8 = 37.5%
1/3 = 33.33%
2/3 = 66.67%
1/6 = 16.67%
1/10 = 10%
1/20 = 5%

EXERCISE 8

a) \(\frac{26}{62} \times 100 = 41.94\% \)
b) \(\frac{13}{27} \times 100 = 48.15\% \)
c) \(\frac{76}{220} \times 100 = 34.55\% \)
d) \(\frac{3}{75} \times 100 = 4\% \)
e) \(\frac{40}{320} \times 100 = 12.5\% \)
f) \(\frac{184}{73} \times 100 = 252.05\% \)

EXERCISE 9

a) Efficiency = \(\frac{100 \times 100}{250} = 40\% \)
b) \(\frac{3 \times 100}{3.35} = 89.55\% \)
c) \(\frac{100 \times 100}{101} = 99\% \)
d) \(\frac{1 \times 100}{5} = 20\% \)
EXERCISE 10
1) Radiator
2) Electric Motor
3) Amplifier
4) Solar Cell

EXERCISE 11
a) 45% of 300 = 135
b) 14% of 0.05 = 0.007
c) 65% of 1200 = 780
d) 0.02% of 1500kHz = 0.3kHz

EXERCISE 12
20% of 670 = 134 workers

EXERCISE 13
5% of $2000 = $100

EXERCISE 14
40% of 1000
= \frac{40}{100} \times \frac{1000}{1} = 400W
New Output = 1000W ÷ 400W
= 1400W

EXERCISE 15
10% of 47000
= \frac{10}{100} \times \frac{47000}{1} = 4700C
Maximum acceptable value of resistor = 47000 ÷ 4700
= 51700ohms
Minimum acceptable value of resistor
= 47000 - 4700
= 42300ohms
EXERCISE 16

5% of 22

\[
\frac{5}{100} \times \frac{22}{1} = 1.1
\]

Therefore the acceptable range of resistance

\[
= 22 \div 1.1 \text{ to } 22 - 1.1
\]

\[
= 23.1 \text{ to } 20.9
\]

A resistance of 21ohms lies within this range, therefore this is an acceptable value.

EXERCISE 17

% of change

\[
\frac{8 - 6}{8} \times 100
\]

\[
= \frac{2}{8} \times 100 = 25\%
\]

The current has decreased by 25%

EXERCISE 18

% of change

\[
\frac{63 - 50}{50} \times 100
\]

\[
= \frac{13}{50} \times 100 = 26\%
\]

The cable is overloaded by 26%

EXERCISE 19

% of change

\[
\frac{420 - 240}{240} \times 100
\]

\[
= \frac{180}{240} \times 100 = 75\%
\]

The voltage has been increased by 75%
EXERCISE 20

% of change
= \frac{130 - 120}{120} \times 100
= \frac{10}{120} \times 100 = 8.33

The voltage has increased by 8.33%

EXERCISE 21

% error
= \frac{50000 - 48000}{50000} \times 100
= \frac{2000}{50000} \times 100
= 4

The percentage error in the resistance is 4% too low.

EXERCISE 22

% error
= \frac{128 - 120}{128} \times 100
= \frac{8}{128} \times 100 = 6.25

The percentage error in measured voltage is 6.25% too low.